Miyazava Multiplier Model in disaggregated
Household income Group

Abstract

The important work of Miyazawa (1976) on endogenizing households in an input-
output model generates various multiplier matrices. 10 A comprehensive overview of the
explicit demographic-economic interactions in the Miyazawa structure and its applica-
tions can be found in the collection of papers in Hewings et al. (1999). In this section we
depart from some of the notation used elsewhere in this book, in order to be consistent
with that used by Miyazawa, since virtually all subsequent discussion and application
of the Miyazawa framework has continued to use his notation. Specifically, this means
that we will now define B = (I — A)~! (instead of L, since Miyazawa uses L for
another purpose, as we will see bean}.

Disaggregated Household Income Groups
We assume that households can be separated into ¢ distinct income-bracket groups and
that payments by producers to wage earners in each of those groups can be identi-

fied. Let ( \Y , = [vgj], where vy represents income paid to a wage earner in income
qgxn

bracket g (¢ = 1,...,q) per dollar’s worth of output of sector j. This is a general-
1zation (to g rows) of the single row of household input coefficients or labor input

coefficients in Chapter 2, hg = [ap+1.15- - -y Ans1.0]. Similarly, let C = [c¢j], where
(nxq)
cin 1s the amount of sector i’s product consumed per dollar of income of households

in income group h (h = 1,...,q); this is a generalization (to g columns) of the single
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], n+1
column of household consumption coefficients in Chapter 2, he = : , and yet
| dpn+1 |

another use for C in input—output discussions. So the augmented matrix of coefficients is

N\ C
_ (nxn) (nxq) ] ]
A= , and the expanded input—output system is

\Y 0
_(gxn)  (gxq)_

BEEMINEN

where Y is a vector of total income for each of the income groups, f* is a vector
(gx=1) (nx1)

of final demands excluding household consumption (now endogenized) and £ is a
| (gx1)
vector of exogenous income (if any) for the income groups.

Assume that & = 0; then the two matrix equations in the system in (6.37) are
(gx1)

Xx=Ax+Cy+f*andy = Vx (6.38)

X T—A -Cc17'r¢
17| = | (6.39)
y -V I 0

Using results on inverses of partitioned matrices (Appendix A) it is not difficult to show
that the elements of the partitioned inverse in (6.39) can be expressed as

X B(I1+CI—-VBC)"'VB BCI-VBO)"'7[r*
= (6.40)
y (I- VBC)"'VB (I—-VBC)™! 0

From (6.37)

where, as noted, B = (I — A) 1.
This can be simplified if, following Miyazawa, we define VBC = L and K =
I-L)"'= 1 - VBC)~!, so that

[ B(I+ CKVB) BCK']

X {nxn) (nxq) f*
= (6.41)
y -KVB K 0
- (g>n) (gxqg) _

Miyazawa defines L as the matrix of “inter-income-group coefficients” and K as the
“Interrelational income multiplier” matrix. A typical element of L is I, = vyibjicin:
this shows the direct increase in the income of group g resulting from expenditure of
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an additional unit of income by group k. Reading from right to left, household demand
(expenditure) of cj, by group h for the output of sector j requires bijcjn in output from
sector i and this, in turn, means income payments from sector i in the amount of vg;bjjcjn
to households in group g. Similarly, each elementin K = (I — L) ~1 indicates the total
increase (direct, indirect and induced) in the income of one group that results from
expenditure of an additional unit of income by another group. (An illustration of this
approach can be found in the matrix of interrelational income multipliers, K, for 11
income groups in the USA for 1987 that is shown in Rose and Li, 1999.)
From (6.41),

x = B(I + CKVB)f* (6.42)

and
y = KVBf* (6.43)

In (6.42), the effect of final demands on outputs is seen to be the product of two dis-
tinct matrices. The first is the Leontief inverse of the open model, B. The second is
(I'4+- CKVB); this augments the final demand stimulus, If*, by CKVBf *. which endo-
genizes the total income spending effect. Again, starting at the right, Bf* generates
the initial output (without household spending), VBf™ indicates the resultant initial
income payments to each group, KVBf™* multiplies that into total income received in
each group — this is exactly what is described by the result in (6.43) — and, finally,
CKVBf* translates that received income into consumption (demand) by each group
on each sector’s output. Miyazawa denotes KVB the “multi-sector income multi-
plier” matrix (or the “matrix multiplier of income formation™), indicating the direct,
indirect and induced incomes for each income group generated by the initial final
demand.

6.4.2 Miyazawa’s Derivation
Miyazawa first derives the results on the interrelational multiplier matrix without ret-
erence to partitioned matrices [in Miyazawa, 1976, Chapter 1, sections I1(2)-1II(1);
the partitioned inverse structure appears later in Chapter 1, section III(3)]. He makes
extensive use of partitioned matrices later in the book — especially in Part 2 on internal
and external matrix multipliers. This is a direction that has been explored and expanded
considerably in much of the work of Sonis, Hewings and others (summarized in Sonis
and Hewings, 1999, which also contains an extensive set of references to their work).
A second direction of research that extends the input—output framework to incorporate
interactions between economic and demographic components is associated with the
many publications of Batey, Madden and others (summarized in Batey and Madden,
1999, again with many references).

‘We present Miyazawa’s initial approach here primarily for completeness, and because
the results are often discussed (briefly) in this form in the literature. He begins with

x = Ax+ CVx +f*
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from (6.38). From this,
x=0—-A—-CV) lf* (6.44)

and with B = (I — A)~!, straightforward matrix algebra gives
I—A—CV)=B"'-CV)BB™! = (I -CVB)B™'

Substituting into (6.44),
x = [(I = CVB)B~']7'f*

and, from the rule for inverses of products,
x = B(I — CVB)"!f* (6.45)

In this form, we find the original Leontief inverse, B, pnstmultiplied by (I = CVB)™'
which Miyazawa termed the “subjoined inverse matrix.”

A further variation is possible and is sometimes used. Starting with (6:45) and, as
earlier, with VBC = L and K = (I — L)™', then

KI—-VBC) =1
Premultiply both sides by C and postmultiply both sides by VB,
CK(I — VBC)VB = CVB or CK(VB — VBCVB) = CVB
Factor out VB to the left and then subtract both sides from I, giving
[ - CKVB(I—CVB)=1-CVBorl=CKVB(I-CVB) +1 — CVB

Regrouping terms
I =(I+CKVB)I-CVB)

and so, from the fundamental definition of an nverse,
(I—CVB)~! = (I+ CKVB)
Putting this result into (6.45) gives

x = B(I + CKVB)f* (6.46)

as in (6.42).

Miyazawa suggests that if labor input coefficients, in V,-and household consumption
coefficients, in C, are less stable than interindustry coefficients (in A and consequently
in B), there i1s an advantage to using the format in (6.46) instead of (6.45). Namely, a
revised subjoined inverse, (I — CVB)™!, whose order is n, can be found by using K,
whose order is ¢ ... [which] in most cases is very much smaller thann ...” (Miyazawa,

1976, p. 7). However, inverting large matrices is no longer the concern that it was in
the 1970s.
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From (6.46), household income, y = VX, 1s seen to be
y = VB(I+ CKVB)* = (I+ VBCK)VBf* = (1 + LK) VBf~
Butsince K = I —-L)!, - L)K =1, LK =K -, s0 I+ LK) =K, and
y = KVBf~ (6.47)
as in (6.43).

6.4.3 - Numerical Example
We expand the numerical example from Chapter 2, assuming a three-sector economy

with households divided into two income groups. Let the augmented coefficients matrix

be ~ _
0.15 025 0.05 0.1 0.05

- - | 02 005 04 02 01
03 025 005 001 0.1

. J 1005 01 008 0 0
012005 01 0 O

In particular, labor income coefficients for the two household groups are given in the

tworowsof V = [3{1}; {? 35 ﬂ[ﬂg], and consumption coefficients for those same two-
0.1 0.05
groups are given in the two columns of C=| 0.2 0.1
| 0.01 0.1 |
(13651 .4253 2509
Given V, C, and B = (I — A)~! = | 5273 1.3481 .5954 |, the relevant
| 5698 4890 1.2885

Miyazawa matrices are easily found to be

VBC = [‘GSM '0454} and K=(1-VBC)™!= {

1.0642 .0507
0601 .0480 |

0671 1.0536

For example, in this illustration, a direct increase of $1 in income to households 1n

group 1 leads to a 6.7 cent (ka1) increase in income payments to households in group
2. Similarly,

2716 .1894 .2106

In this case, for example, an additional unit of final demand for the goods of sector 1
generates 27.16 cents in new income for group 2. Furthermore,

KVEB — [.1393 2162 .1960}

C1.4445 4994 3234 | 2476 .1545
B(I—CVB)™! = | .6496 1.4609 .7062 and BCK = | .3642 .2492
| 6577 .5644 1.3648 | | 1923 .2258 |
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(The reader can make appropriate interpretations of the elements in each of these
matrices.)

In this case, the Leontief inverse for the augmented system can easily be found
directly; it is'’

14445 4994 3234 2476 15457

s moq | 6496 14609 7062 3642 2492

d-A)! =B = PR 6577 5644 13648 1923 2258
B B 1898 2162 .1960  1.0642 .0507

2716 .1894 2106  .0671 1.0536_

and the correspondences with elements in B are exactly as expected, namely K = B,
KVB = By;, BCK =By and B(I — CVB)“I = B1;.

6.4.4 Addmg a Spatial Dimension

We saw in Chapter 3 that mterregmnal or multiregional input—output models were
conveniently represented in partitioned matrix form. To incorporate the Miyazawa
“structure into an [RIO- or MRIO-style model, assume that we have p regions (k,l =
1,...,p) with n sectors (i,j = 1,...,n) each and that we have identified ¢ household
~income groups(g,h=1,...,¢g)n each region. Then the augmented A matrix would be

A C
_ (npxnp) (np = pg)
A=
V 0
_(pgxnp)  (pgxpq) |
where
Al Alr -l crl 7
1 (nxn) (nxn) (nxq) (nxgq)
e R B e R B
pXnp Apl APP p=qp CPI Crp
| (nxn) (nxn) | | (nxq) (nxq) |
and
™ V” V]P ]
(gxn) (g xn)
: : ki
V —_— . . Vo-1.
(g > np) ' ) [ .:‘{J]
\ VPP
| (gxn) (gxn)_|

Notice that consumption coefficients require knowledge of the spending habits of con-
sumers in each income group in each region on goods from each sector in each region.
Similarly, the labor input coefficients require knowledge on payments to laborers in

each income group in éach region by each sector in each region.
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Table 6.8 Interrelational Interregional Income Multipliers

Region of Income Origin

Region of Income Receipt 1 2 3 4  Row Total

1 1.23 012 0.16 0.07 1.57
2 0.11 128 013 0.05 1.57
3 0.11 0.03 1.06 0.01 1.14
4 044 0.56 050 1.77 3.28
Column Total 1.81 199 185 1.90

Source: Hewings, Okuyama and Sonis, 2001, Table 9.

The elements in the partitioned inverse in (6.41) will have the same dimensions as
A, namely

"B(I+ CKVB) B€K ]

X (npnp) (npxpg) | | £
y KVB K 0

o (pgxnp) (paxpgq) _

Clearly, this is potentially very demanding of data. However, an illustrative application
can be found in Hewings, Okuyama and Sonis (2001) for a 53-sector, four-region model
(Chicago and three surrounding suburbs), without division into income groups — that
is,n = 53, p = 4, and g = 1. In this case the income formation impacts are across
regions rather than income groups. In particular, K is a 4 x 4 matrix; it is shown in
Table 6.8.1°

Reading down column 1 for illustration, we find that from an increase of $1 in income
in Region 1, an additional $0.23 is generated in Region 1, $0.11 in Regions 2 and 3,
and $0.44 in Region 4. Column sums have an'interprﬂfatiﬂn similar to the more usual
output multipliers; they indicate the new income generated throughout the four-region
system (Chicago metropolitan area) of an additional $1 in income in the région at
the top of the column. Row sums are a measure of additional income in each region
at the left as a result of a $1 income increase in each region. (As with row sums
of the usual Leontief inverse, these are generally less useful results than the col-
umn sums.) Often, results in empirically derived interrelational multiplier matrices
are normalized in some way to account, for example, for differences in sizes of the
regions being studied. A complete interregional Miyazawa analysis would require that
we distinguish several income brackets in each region (that is, g > 1) and then create

consumption coefficients and labor input coefficients for each of those brackets (in each
region).
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6.5 Gross and Net Multipliers in Input-Output Models

6.5.1 Introduction

Leontief’s earliest formulations (for the USA in 1919, 1929, and 1939) were in terms
of “net” accounts. The fundamental balance equations had no z;; or a;; terms; in the
empirical tables the on-diagonal elements were zero.

[The interindustry transactions table] would naturally have many empty squares. Those lying along
the main diagonal are necessarily left open because our accounting principle does not allow for
‘registration of any transaction within the same firm ...” (Leontief, 1951, p. 13)

The output of an industry ... is defined with exclusion of the products cons umed by the same industry
in which they have been produced. Thus aj; = a2 = - = ajj = -+ = amm = 0 by definition.
(Leontief, 1931, p. 189)

The 1947 US input—output tables discussed and published in Evans and Hoffenberg
(1952) include nn—diagnn’al transactions, coefficients, and inverse elements; in that sense
these tables are “gross.” They leﬂt out that the inverse figur es can be adjusted to exc]ude
intra-sector transactions but they do not suggest that as a preferable alternative.'? In
Leontief et al. (1953, Chapter 2 by Leontief) the equations in the text are gross but the
tables and the equations in the Mathematical Note to Chapter 2 are net. In virtually all
later publications (for example, Leontief, 1966, Chapters 2 and 7) on-diagonal elements
are included.!* (For a thoughtful discussion of net and gross input—output accounts,
see Jensen, 1978.) This net/gross distinction led to the concept of input—output “net”
multipliers, which we explore below.

6.5.2 Multipliers in the Net Input—Quiput Model

We consider only square systems. Generating a net model simply means that the main
diagonals of Z and A contain only zeros, and that the gross output vector is reduced
by the amount of each sector’s intraindustry transactions. As usual, denote by Z the
diagonal matrix containing the elements z;. Then let Z,,oy = Z — Z, and X Xnet = X — Z:
this latter 1s a diagonal matrix of sectoral outputs in the net system from which on-
diagonal (intrasectoral) transactions have been removed.!> As usual, input coefficients
are found for the net system as

Aver = Znetinet) ' = (Z - L)X —Z)!

and

A=Ape)) =1—(Z-D)(X—-Z)""

13 In contrast, Georgescu-Roegen (1971) argues that diagonal elements in an input—output model (“internal flows™)
must be suppressed.
4 Early input-output tables in the UK (for example, for 1954 and 1963) were prﬂqented in “net” form (UK, Central
Statistical Office, 1961 and 1970). Fifteen-sector versions of these tables appear in Allen and Lecomber (1975)
"and Barker (1975).

I5 Alternative notation uses Z instead of Z e, and similarly for A pe; and Xne;. We avoid that convention because
it becomes cumbersome when the vector X, needs a hat to indicate the associated diagonal matrix — and a
* " on top of a *v" is just too much.
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We now examine an alternative expression for the right-hand side. [This demonstration
appears to have originated in Weber, 1998 (in German). It is apparently not widely
known, at least outside the German-speaking world.] Using the observation that (X — Z)
(X — 7)™ =1, it can be shown that!®

A= Aper) = [A-A)XIE - Z)"

Taking the inverse of both sides,
Lnet = A — Aper)™ = ([ - AR - 2)7"} !

and using the matrix algebra rule for inverses of products (for appropriately sized
matrices) that (MNP)~! = P~IN-IM—1L,

Luee = R —Z2)X ' T - A) ! = Rk 'L (6.48)

from which
Xnier) ™ Luer =x"'L (6.49)

[Notice from (6.48) that L; = (& — Z)8~'L = (I — A)L, where A = Z&—1]17
Consider household income multipliers for the two systems. Given a vector of
total household income by sector, z, = [Zp41.1,-..,2n4+1.], then h = z;X ~1 and

hyer = 24 (Xner) ") are the vectors of earnings coefficients in the gross and net systems,
respectively. From (6.49),

- -]
Eh(xnﬂ) Jm.r — Ehl’( L

or
hﬂE.I!'L.rte'.I' = hL

Thus, the income multipliers in the two systems are equal, and therefore for studies
in which these kinds of multiplier results are of interest, it makes no difference which
model is used.

This result is equally valid for most other multipliers — value-added, household

income, pollution-generation, energy use, etc. — associated with productive activity
(Table 6.4). The only exception is for output multipliers — m(o) = i'L and m(0),,; =
i'L,¢r; they will not be equal,'® since from (6.48) Ly = XX 'L. However, the
transformation from one to the other is straightforward, namely

=/~ -1
m(f})ner =1 Lnef =1 xnﬂfi L

16 This particular expression for the identity matrix may seem unmotivated, but it cleverly allows for a significant
rewriting of the E?&pl’ﬂﬂﬂ]ﬂn for (I — Aﬂﬂ} For the interested reader, the derivation is:
(- Aper) = (X - z:u:x -Z} -2 -DER-DT = (R-D-Z-DIG-D) " = G-DG-D) =
[(X - Zx~HR)(k - =[I- ARG -2)~L

I7 This fact was noted by Evans and Hoffenberg (1952, p. 140) who used a verbal argument and not a matrix

algﬁhra demonstration.
8 Except for the trivial and uninteresting case when X = Xyer.
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= f af o pom —_
m(o) =1L = I'X(Xper) ]Lnet

(Recall that order of multiplication of diagonal matrices makes no difference.)

Numerical Example'” Let Z =

[ 0 500 SO

200 0 400 |.Ifx=

1000 |
2000

300 500 0
© 850 ]

1900

950

Xnet =

ThenL = | .5273

In this case,

| 1000 |

) Aner = Zner (iﬂﬁi') -1 =

13651 4253 .2509
1.3481
| 5698 4890 1.2885

5954

, A

(150 500 50 ]
200 100 400
| 300 500 50 |
.15 .25 057
2 05 4 |;
3 .25 05 |

0 2632 0526
2353 0 4211
| 3529 2632 0

-

e
e

andLngI‘ = (I—AHEI)_FI -

m(o) = i'L = [2.4623 2.2624 2.1348]
M (0)ner = 'Liper = [2.2026 2.1067 2.0030 |

[ 1.1765
0
0

Here X(Xpe;) ™' =

e

[1.1765 1.0526 1.0526]

as expected.

0 0

1.0526 0

0 1.0526
(1.1603 3615 .2133
5010 1.2807 .5656
5414 4646 1.2241

SO Zpet =1 — Z=

1.1603 3615 2133 |
5010 "1.2807 .5656

| .5414 4646 1.224] |

sfoen —1
and so m(0) = 1'X(Xper) ™ Ljier =

= [2.4623 2.2624 2.1348 |

Finally, let z;, = [100, 120, 80] (household income payments); then

h=[0.10 0.06 0.08 ] and hye =[0.1176 0.0632 0.0842]

from which

hL = hyeLpe = [0.2137 0.1625 0.1639 ]

again as expected.

6.5.3 Additional Multiplier Variants

(Indirect Effects)/(Direct Effects) A number of analysts have taken the view
that multipliers should not include the initial stimulus, as they do when the basic

19 We use the 3 x 3 example from earlier but now disregard the fact that sector 3 is households and simply treat
this as a general three-sector model illustration.
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definition is “total effects”/“direct effects.” For example, for output multipliers this
means the $1 of new final-demand for sector j which turns into $1 of new sector
j output. The usual resolution is simply to subtract 1 from each of the elements in
m(o). This is equivalent to replacing L by (L. — I) in the formula for m(o), since
i'(L —I) = 'L — i'l = m(o) — i’. (For example, see Oosterhaven, Piek and Stelder,
1986.)%° Of course this will not change the rankings of the sectors, but it certainly has
implications for other kinds of calculations in which the multipliers are used.

The same adjustment [subtracting 1 or using (L — I)] is appropriate for any Type I
or Type II multiplier (Table 6.3). As an example when r = h, the Type I multlpher
m(h)= hL would be converted to h(Li — I)h‘ —hLh~! —hIh~! = m() — i’

“Growth Equalized” Multipliers Policy makers may wish to know the impact
on a particular sector of a general expansion in final demand in all sectors (for example,
to help identify “bottlenecks”) or of changing patterns of final demand. One approach
involves what have been called “growth- equalized” multipliers. (See, for example,
Gray et al., 1979, and Gowdy, 1991, for these-and many additional multipliers.) The
motivation is clear: “... size variation among economic sectors prevents meaningful
comparisons of multipliers ... to add $1 of output to some sectors represents a much
larger rate of growth than it would for other sectors” (Gray et al., 1979, pp. 68, 72,
respectively).

Consider output multipliers; again, the principles are the same for all the other pos-
sible multipliers. The idea begins with the multiplier matrix M(0) = L. Row sums,
M (o)i = Li, indicate output effects in each sector when final demand for each sector
increases by $1.00. This is generally considered an unlikely scenario; an obvious varia-
tion is to posit an unequal increase in final demand across sectors. For example, instead
of Li one could use L{f (i'f) i, wherﬂ_(f{i’f}_l} is a diagonal matrix showing each
sector’s final demand as a proportion of total final demand, fj/ ) _ f;; that is, a measure

J
of relative sector size (or importance). (Base-year output proportions, xj/ Y x;, could
| J
also be used.) Element (i, j) in the matrix L{f ('f)~!) shows the effect on sector i out-
put of a $(f;/ >_f;) increase in j’s final demand. Then L(f (i'f)~1)i shows the multiplier
J
effect on each sector’s output of a $1 final-demand increase distributed across sectors
according to their proportion of total final demand.

Another possibility is to use equal percentage, not absolute, demand increases across
sectors. This is the “growth equalization.” For example, elements of the column vector
[M(0)](0.01)f = (0.01)Lf indicate output effects in each sector when final demand
for each sector increases by one percent, and (0.01)i'Lf = (0.01)[m(o)]f indicates the
economy-wide total output generated. We illustrate with the same three-sector figures.

20 Since (L - = LA-L~ =LA or (L —I) = (I - L™Y)L. = AL, these modified multipliers could also
be found as i’ AL or i'LA (see de Mesnard, 2002, or Dietzenbacher, 2005).
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For the example,

300 7 i T T[0.1714 0 0 ]
f = | 1300 | and (f('f)"1) = Jj-fZJg- = 0 07429 0
| 150 | i ] Lo 0 0.0857
In this case,
0.2340 0.3159 0.0215] 0.5714
L)~ = | 0.0904 1.0015 0.0510 | and [L(f({i'f)"1)])i = | 1.1429
1 0.0977 0.3633 0.1104 | 1 0.5714

Using a one percent increase for the growth equalization illustration,

- 4.0953 55284 0.3764
L{(0.01)f) = | 1.5820 17.5250 0.83930
__1.'?095 6.3576 1.9328

and

'L((0.01)f) = [7.3868 29.4110 3.2022]

Recall that for this example the simple output multipliers were
m(o) = i'L = [2.4623 2.2624 2.1348]

and we see that the relative importance of the sectors is altered (now it is final demand
for sector 2 that is the most stimulative; previously — in m(o) — it was sector 1).

Another Kind of Net Multiplier ~Standard input—output multipliers (Tables 6.3
and 6.4) are designed to be used with (multiplied by) final demand. Oosterhaven and
Stelder (2002a, 2002b) have observed that in the real world, “practitioners” sometimes
(perhaps often) use them incorrectly, to multiply total sectoral output (or value added
or employment). So they propose net multipliers (the terminology could be confus-
ing; these are not multipliers in a net model, as in section 6.5.2). Essentially, they
simply convert a standard multiplier so that it can be used in conjunction with total
outputs. For example, their Type [ nef output multipliers are i’Lf}, where f. = [ f;/x;];1n
their terms, f;/x; is the fraction of j’s output that may “rightfully be considered exoge-

nous” (Oosterhaven and Stelder, 2002a, p. 536). Specifically, they “decompose” i’ Lf
as follows:

i'Lf = m(0)f = m(o)fi = m(0)f&x~'%i = m(o)f.x = i'Lf.x

The net multiplier matrix 1s thus Lf. and the associated vector of economy-wide
multipliers 1s i"Lf} = m{ﬂjﬁ;. Other multipliers can be similarly modified.

This work generated considerable discussion and a lengthy and elaborate exchange
(de Mesnard, 2002, 2007a, 2007b; Dietzenbacher, 2005, Oosterhaven, 2007), with a
variety of interpretations and alternative terminology. In the end, “net contribution”
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or “net backward linkage” indicators were suggested as a more appropriate label than
“multiplier.” We will return to an aspect of this in Chapter 12 on linkage measures 1n
input—output models.

6.6 Multipliers and Elasticities

6.6.1 Output Elasticity
Another approach to compensating for differences in industry size is one step further
from simply considering percentage increases in final demand (as above, in growth
equalized multipliers). The idea is to measure both the stimulus and its effect in
percentage terms — in this case the percentage change in total output (or income or
employment, etc.) due to a percentage changein a given industry’s final demand.
(See, for example, Mattas and Shrestha, 1991 or Ciobanu, Mattas and Psaltopoulos,
2004.) These (percentage change)f(pe:n_::entagﬂ change) measures are “elasticities” in
economics terms. |

In particular, consider -aone-percent change in f; only, so (Af) =[0,...,

Iy
(0.01)f;,..., 0).Then Ax = LAf =, | : | (0.01)f;. Theeconomy-wide output change
| Inj _
1y
isi’Ax =i’ | : | (0.01)f; = m(0);(0.01)f;. This percentage change in total output
| nj _

(across all industries) that is generated by (0.01)f; has been labeled the output elasticity
of industry j (oe;) and is defined as

oej = 100 x (i’ Ax/i’x) = 100 x m(0);((0.01)f;/i'x] = m(0);[f;/i'x]

(It would be more precise to call this an output-to-final demand elasticity, to distinguish
it from other elasticities, below.)

Modification of any of the other multipliers in section 6.2.2 — through multiplica-
tion by [f;/i'’x] — produces exactly parallel results, giving income, employment, etc.,
elasticities to final demand. Note that these are very similar to the “growth-equalized”

multipliers above; in that case, the modification was produced by [jj/ ij} while
j
here it is [_f,/ ij].
i

6.6.2 OQutput-to-Output Multipliers and Elasticities

Direct Effects  Starting with z;; = a;jx;, consider the direct effect of an exoge-
nous change in industry j’s output (Ax;) — Ax; — Agz; = a;jAx;j. This Azjj represents
new i output directly required by j, so Ax; = Az;j, and thus Ax; = ajjAx; or Ax;/Ax; =
a;j. Now consider a one percent increase in j's output Ax; = (0.01)x;; this means
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Ax; = (0.01)a;x;. So the (i, j)th element of the matrix (0.01)Ax measures the direct
effect of j’s one percent increase in output on industry i. Expressed as a percentage of
i’s output, we have 100(Ax;/x;) = 100(0.01)a;x;/xi = aijX; /x;. And in matrix form,
this is the (i, j)th element of the matrix 3~ 1A%, showing the direct effect on industry i’s
output (percentage change) resulting from a one percent change in industry j's output.
This is a direct output-to-output elasticity. We will meet the matrix X~ 'AX again in
Chapter 12, where we explore supply-side input—output models.

Total Effects Elements of the Leontief inverse matrix translate final demand
changes into fotal output changes — Ax; = l; Af; and [ = Ax;/ Afj. These encompass
direct and indirect effects, and they are at the heart of the multipliers explored in previous
sections in this chapter. Again, it would be slightly cu mbersome but completely accurate
to call f;; an output-to-final-demand multiplier. Consider [;;, the on-diagonal element 1n
the jth column of L — [jj = Axj [ Af; or Ax; = Lij Afj- Define I;_as Lii /i then

It = ly/ly = [Axi/ D)1 D%/ Bfj) = Bxi] B

or Ax; = I Axj. Thus, f;} could be (and has been) viewed as a tofal output-to-output
multiplier.
The matrix of these multipliers, L™ = [.E:.‘J;], is created by dividing each element in

a column of L by the on-diagonal element for that column - L* = L(L) " !(as usual,
I, is a diagonal matrix created from the on-diagonal elements in L). Then each of the
elements in column j of L* indicates the amount of change in industry i output (the row
label) that would be required if the output of industry j were increased by one dollar.”’

Suppose, then, that industry j 1s projected to increase its output (0 some new amount,
x;. Postmultiplication of L* by a vector, X, with X; as its jth element and zeros elsewhere,
will generate a vector of total new outputs, x*. necessary from each industry in the

economy because of the exogenously determined output in industry j. That is,
x* =L*x (6.50)

We return to this matrix in Chapter 13 in the context of “mixed” input—output models 1n
which final demands (for some industries) and gross outputs (for the other industries)
are specified exogenously.

Moving to elasticity terms, the (i, j)th element of (0.01)Lx gives the (total) new output
in industry i caused by a one-percent output increase in industry j. So, exactly parallel to
the direct elasticity case, above, the (i, j)th element of x X gives the percent increase
in industry i total output due to an initial exogenous one percent increase in industry j
output — the “direct and indirect output elasticity of industry i with respect to the output

21 This is equivalent to the “total flow” approach of Szyrmer (for example, Szyrmer, 1992). He makes a case for the
unsuitability of the usual output multipliers (from the standard demand-driven input—output model) for a wide
variety of real-world impact studies. Some analysts argue that the initial exogenous one-dollar stimulus should
be removed from the “total effect” calculation. As was seen above (section 6.5.3), this can be accomplished
by replacing L by (L = I). The interested reader should see de Mesnard (2002) and Dietzenbacher (2005) for
details.
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in industry j” (Dietzenbacher, 2005, p. 426). We will also meet this matrix, X~ 'LX,
again in Chapter 12 in the discussion of supply-side input-output models.

6.7 Multiplier Decompositions

A number of approaches have been suggested for analyzing the economic “structure”
that is portrayed in input—output data. Multiplier decompositions are a prominent part
of this research, and we explore two of these in this section.*?

6.7.1 Fundamentals
We start with the fundamental input—output accounting relationship

X = A X + f (6.51)
(nx1)  (nxn) (nx1) (ax1)

from whichx=(I— A)~If = Lf. We now introduce some algebra that initially appears
unmotivated but it will soon be clear what is accomplished. Given some A ,‘adding

and subtracting Ax to (6.51) and rearranging produces o
x=Ax —Ax+Ax+f= TI—-A)x=(A—A)x+f (6.52)
and, solving®’ for x,
x=0-A)""A-Ax+A-A)"'f
Let A* = (I—A)"1(A - A); then this 18
x=A'x+(I—-A)"'f (6.53)
Next, premultiply both sides of (6.53) by A*
A*x = (A*)’x + A*(I - A)7'f (6.54)

and substitute this for A*x in the right-hand side of (6.53)
x = (A" 4+ AT - A) T+ T —A)7'f =AM x + T+ AHT - A)7'f (6.55)
Again, solving for x,

x=[1—- A1 TI+AHA-A)"'f (6.56)
o . L "‘___..."\. _ A
M, M- M,

In this way the usual Leontief inverse (multiplier) matrix, (I — A}_', has been
decomposed into the product of three matrices.

22 For an overview of these and several others, see Sonis and Hewings (1988) or additional references noted in
section 14.2, below.
23 Here and throughout we assume nonsingularity of the matrices whose inverses are shown.
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This algebra can be continued. Premultiply both sides of (6.55) by A*,
A*x = (A*)’x + [A* + AH A - A7t (6.57)
and, again, substitute for A*x in the right-hand side of (6.53)
x = (A*)’x + [I+A* + (AH2)A — A)7'f (6.58)

Solving for x, we now find

x=[I- (A"’ [I+A*+ A A -A)7'f (6.59)
P’l‘ij iﬁg I:‘[]

[Compare with.the results in (6.56).]

___I'n:thglcﬁntﬂe_f:{_t of social acc_uun_ting matrices (Chapter 11), where much of the funda
mental work on multiplier decompositions originated, M is said to capture a “transfer”
effect, M embodies “open-loop” effects and M3 contains “closed-loop” effects. (For
example, see Pyatt and Round, 1979.) The logic of these labels will be clear in the
interregional context, below.

These iterations can continue any number of times. After k steps, the parallel to (6.58)
18

X =AY+ [T+A*+ AN+ 4+ AH T - A) 't (6.60)
and the parallel to (6.59) is

x=[I—- AT T+A* + A+ + A Na-A)7't (661
M My M,

6.7.2  Decompositions-in an Interregional Context
For a two-region -interregional model (section 3.3) the input—output accounting
relationship x = Ax + f becomes

Hi‘" AI‘T AJ"E x]‘" fi"
= +
[K.'i' } [ASF A'” } |ix.’}' ] [f&' }
With a view toward decompositions, we can isolate the intraregional and interregional
elements in A; let

AH" AI"&' Aﬂ' [' 0 Af'.'i‘
A = = -+
A.’ir A.FE B A” . A.S'r ﬂ
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. A" 0 - I-A" 0
Define A = from which (I — A) = . Then, using

0 A¥ 0 I — A%
the decomposition in (6.56), for example,
. I—Am)~ 0
My =I-A)"'=
0 (I — AS.T}*I

(from the rule that the inverse for a block-diagonal matrix is made up of the inverses
of the matrices on the main diagonal). Also,

A¥= T —-A)1A —A)

TI—-A™1 0 D A"
- | ) {I _ASS)—] AST 0

B 0 {I _ Arr)—lArs
{:I _.AES)—IA.EJ' 0

I

b

and so, again from (6.56),

" I N A* I [I . An'}—lArﬁ
7 = =
(I — A%)~LAST |

Finally, from straightforward matrix multiplication,

(I— AT TABSI — A)“1AS g
(A#}Z _ -
| 0 (I - AF'F)_IAE*'(I —_ AFJ")—]AH
and so
M3 = [I _ (A*}E]—l _
[I — (I _ Arr)_—lArS(I . A”}"IA“']'—I 5
0 lI — (I = AS‘T)“[AH{I _ Aﬂ'}—IAm]—]

(again from the rule for the inverse of a block-diagonal matrix).

In terms of intra- and interregional effects, the matrices in M are seen to capture
intraregional (Leontief inverse or “transfer”) effects, those in M, contain interregional
spillover (“open-loop”) effects, and the matrices in M3 record interregional feedback
(“closed-loop”) effects (Round, 1985, 2001; Dietzenbacher, 2002).2* As usual. define

L — (I — Arr}—l and L% — ' - ﬁs.a*}—l

24 There have been other definitions of these various effects in the input-output literature, beginning perhaps with

Miller (1966, 1969) but also including, among others, Yamada and Thara (1969), Round (1985, 2001), or Sonis
and Hewings (2001).
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These are the intraregional effects in each region (M;). The two spillover matrices in
M, may be represented as

S = LA™ and 8 = L¥A*"
and the two feedback matrices in M3 can be defined as
F”" = [I - L"A"L*A%]"" and F** = [I - LA LA™
or
F” = I - 8"S]~! and F* = [I - §78"] "

Therefore, in the two-region interregional context, x = M3sM;M;f becomes

x" F” 0 I S™ L™ 0 fr
— (6.62)
x* 0 Fss || 8 I 0 LSS - | £

or, carrying out the multiplications,
xi" FI"TLTF FTTSFS LS.T f.i"
= (6.63)
K-'.'I' F.i'.'.'l' S.?-'I'Lil"f FS.S'LE.T f.'i'

6.7.3 Stone’s Additive Decomposition
An alternative decomposition isolates net effects. Starting with the multiplicative result

in (6.56) [or (6.59), or (6.61)], namely x = Mf, where M = M3M-,M,, Stone (1985)
proposed the additive form
M=1 +:{M1 — I}J+k(Mg s I)M1J+\{_M3 — I}MEML

I;‘h I‘;'lz Ii}I:"r

(This 1s easily seen to be true by simply carrying out the algebra on the right-hand side.)
Therefore,

x=Mf=1If —I—EMq — Ilf + L(Mg - I}M}Jf +£M3 — I)MEM]JT (6.64)

e

M, M, """-IE

To paraphrase Stone (p. 162) — in the context of an interregional model — we start with
a matrix of initial injections, If. The second term (M;f) adds on the net intraregional
effects captured in M. Next (in Mf) we add in the net interregional spillover effects
in M3. Finally, the fourth term (IC'Ig,f ) captures the net interregional feedback effects in
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M3. In the two-region example, these are

_ L™ —1 0
My =M;—-1I=
0 L¥ —1

) 0 Srs L7 0 0 Qs 58
M; =(M; —IDM; = —
SSI" “ 0 L-E'-.!' S..'H"Lil"r 0

F-"TL”" — LJ’T FF‘T‘S-".TLS.T —_— STSLSS
M3 = (M3 — IDM2M; = [ ]
FSSSSTLT — SSTLT FSLSS — LSS

While these appear (and are) increasingly complex, they serve to disentangle the
complex net of intraregional, spillover, and feedback effects.

6.7.4 A Note on Interregional Feedbacks

Interregional feedback effects in a two-region input—output model were explored in
section 3.3.2. They were defined early on (Miller 1966, 1969) for the specific scenario
‘of achange in final demand in region r only —so Af” # 0 and Af* =0. Then a measure
of the interregional feedback effect is found as the difference between the output change
in region r that would be generated by the complete two-region model and the output

change in region r that would be calculated from a single-region model. These outputs
are

Axh = [(I— A™) — APL¥AY ] Af" and Axg = (I — A™) 1A

(with subscripts indicating “two-region” and “single-region” models, respectively).
Consider the inverse matrix in Axz, [(I —A"™) — A" — AL AST~]

1. Factoring out (I — A"") gives
(- AL - A - AT TTAST - A®) A}
2. Using the rule that (MN)~! = N~IM~1, we have
I—A—-A")TTASA - A IA ) T a - A™) !
Using L™ = (I — A”’)‘I and L = (I — A%)~!, we have

AXy = (I — L"ASL¥A]7 L Af” and Ax} = L Al



